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Abstract 

Background  We aimed to quantify the identification of mild cognitive impairment and/or Alzheimer’s disease 
using olfactory-stimulated functional near-infrared spectroscopy using machine learning through a post hoc analysis 
of a previous diagnostic trial and an external additional trial.

Methods  We conducted two independent, patient-level, single-group, diagnostic interventional trials (original 
and additional trials) involving elderly volunteers (aged > 60 years) with suspected declining cognitive function. All 
volunteers were assessed by measuring the oxygenation difference in the orbitofrontal cortex using an open-label 
olfactory-stimulated functional near-infrared spectroscopy approach, medical interview, amyloid positron emission 
tomography, brain magnetic resonance imaging, Mini-Mental State Examination, and Seoul Neuropsychological 
Screening Battery.

Results  In total, 97 (original trial) and 36 (additional trial) elderly volunteers with suspected decline in cognitive func-
tion met the eligibility criteria. The statistical model reported classification accuracies of 87.3% in patients with mild 
cognitive impairment and Alzheimer’s disease in internal validation (original trial) but 63.9% in external validation (addi-
tional trial). The machine learning algorithm achieved 92.5% accuracy with the internal validation data and 82.5% accu-
racy with the external validation data. For the diagnosis of mild cognitive impairment, machine learning performed 
better than statistical methods with internal (86.0% versus 85.2%) and external validation data (85.4% versus 68.8%).

Interpretation  In two independent trials, machine learning models using olfactory-stimulated oxygenation differ-
ences in the orbitofrontal cortex were superior in diagnosing mild cognitive impairment and Alzheimer’s disease 
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compared to classic statistical models. Our results suggest that the machine learning algorithm is stable across differ-
ent patient groups and increases generalization and reproducibility.

Trial registration  Clinical Research Information Service (CRiS) of Republic of Korea; CRIS numbers, KCT0006197 
and KCT0007589.

Keywords  Cognitive impairment, Alzheimer’s disease, fNIRS, Mild cognitive impairment, Machine learning

Graphical Abstract

Introduction
Alzheimer’s disease (AD) accounts for 70% of the causes 
of dementia, and early diagnosis of AD is important to 
prevent the delay of dementia treatment [1, 2]. Thus, 
early detection of AD is important for addressing emerg-
ing global problems, and previous studies have suggested 
that olfactory function can be used for the early diagno-
sis of AD [3–6]. Based on this evidence, we reported a 
novel approach for the early detection of mild cognitive 
impairment (MCI) and/or AD dementia using olfactory-
stimulated functional near-infrared spectroscopy (fNIRS) 
diagnostic techniques [7].

Although we suggested a novel approach for the diag-
nosis of MCI and/or AD Dementia, it is difficult to ensure 
reproducibility and generalization of this approach in 

real-world practice. To obtain more reliable AD predic-
tion results, we performed additional trials for inde-
pendent extra-validation and applied several machine 
learning algorithms for robust reproducibility and gener-
alization in real-world practice. Through two independ-
ent, patient-level, single-group, diagnostic intervention 
trials, we investigated the potential diagnostic efficacy 
of olfactory-stimulated fNIRS using machine learning 
algorithms and quantified this approach through artificial 
intelligence (AI)-driven fields.

Methods
Study design and ethics statements
This study consisted of a post hoc analysis of the diag-
nostic accuracy trial (total n = 97) for which data were 
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published previously [7, 8] and an independent external 
diagnostic trial (total n = 34).

Written informed consent was obtained from each 
participant and his/her legal guardian at the time of 
enrollment. The study protocol was approved by the 
Institutional Review Board of Gwangju Institute of Sci-
ence and Technology (previous trial, 20210115-HR-58–
01-02; additional trial, 20220628-HR-67–02-02). The trial 
was registered with the Clinical Research Information 
Service of the Republic of Korea (previous trial, CRIS 
number: KCT0006197; additional trial, KCT0007589). 
This study adhered to the tenets of the Declaration of 
Helsinki.

Post hoc analysis
The previous study was designed as a prospective, 
patient-level, single-group, diagnostic accuracy study 
conducted in 97 elderly volunteers (aged > 60 years) sus-
pected of having declining cognitive function between 
March 2, 2021, and August 30, 2021. Detailed methods 
have been described in a previous study [7]. Patients 
underwent open-label olfactory-stimulated fNIRS to 
measure oxygenation differences in the orbitofrontal 
cortex, 18F-florbetaben positron emission tomography 
(PET) amyloid imaging (Discovery STE PET-CT scan-
ner, GE Medical Systems), three-dimensional brain 
imaging (MAGNETOM Skyra, Siemens Healthineers), 
apolipoprotein E (APOE) genotyping from peripheral 
blood samples, medical interviews (age, body mass index, 
sex, education, household income, smoking status, and 
Charlson comorbidity index [9]), Mini-Mental State 
Examination (MMSE), Korean Instrumental Activities of 
Daily Living (K-IADL) [10], and Seoul Neuropsychologi-
cal Screening Battery (SNSB) [11].

External additional trial
We additionally included 34 elderly volunteers 
(aged > 60 years) suspected of having declining cognitive 
function, with the same inclusion criteria for extra-vali-
dation, between July 22, 2022, and August 30, 2022. The 
trial was conducted by Kolab (Gwangju, South Korea), an 
International Organization for Standardization-certified 
International Contract Research Organization. All the 
same tests (fNIRS, PET, brain MRI, APOE genotyping, 
medical interview, MMSE, K-IADL, and SNSB) as in the 
original trial were performed.

Alzheimer classification criteria
The stages of AD were divided into normal, MCI, and 
AD dementia, and these criteria were divided based on 
the 2011 National Institute on Aging-Alzheimer’s Asso-
ciation recommendations [12]. Normal cognitive func-
tion was defined as patients with normal MMSE or SNSB 

results, MCI as a z-score (normalized for age and educa-
tion level) <  − 1.0 on at least two cognitive domains of 
the SNSB tests (memory, attention, visuospatial function, 
language, and related function, and frontal/executive 
function) according to the comprehensive criteria of Jak/
Bondi [13], and AD as those with MCI and impairments 
in daily functioning according to the K-IADL.

Diagnostic procedure
Using the same fNIRS system as in the previous study [7], 
we measured the activation of the prefrontal cortex dur-
ing olfactory stimulation (N2; N.CER Co.Ltd,  Gwangju, 
South Korea). It can trace the hemoglobin oxygen con-
centration in the cerebral cortex over time [14]. In this 
study, we placed the FP1 and FP2 sides on the upper eye-
brow according to the International 10–20 System for 
electroencephalography (EEG) measurements [7]. One 
cycle of the olfactory stimulation process was performed 
before a break of 40  s, followed by stimulation for 20  s 
(one cycle: 1 min), and then three cycles were conducted 
(total time: 3 min). Olfactory stimulation was stimulated 
using a sniffing stick pen (unscented and peppermint 
scented; Burghart Screening 12 Test) [15].

Statistical analysis
Baseline data are presented as median and interquartile 
range or mean and standard deviation. Statistical analysis 
was performed using R software, version 3.1.1 (R Foun-
dation,  Vienna, Austria), and SPSS (version 25.0; IBM 
Corp., Armonk, NY, USA) [16–18]. Two-tailed P-val-
ues < 0.05 were considered statistically significant.

We used the following covariates: age, sex, body mass 
index (< 25  kg/m2 [normal] and ≥ 25  kg/m2 [overweight 
or obese]), years of education (continuous variable), 
household income (low [1–29 percentile], middle [30–69 
percentile], and high [70–100 percentile]) [19], smoking 
status (never or ex-smoker and current smoker), Charl-
son comorbidity index (0, 1, and ≥ 2) [9, 20], APOE4 
carrier, MMSE results, z-score (normalized for age and 
education level) of the SNSB test results (memory, atten-
tion, visuospatial function, language and related function, 
and frontal/executive function), standard uptake value 
ratio from amyloid PET, and hippocampal volume on 
brain MRI. We also used C-statistics to express the mean 
area under the receiver operating characteristic curve 
(AUC) using 95% confidence intervals as statistics for the 
predictive model of MCI and/or AD.

Features of the machine learning models
To validate our proposed machine learning models, 
we performed fivefold cross-validation for our pro-
posed machine learning models from the previous 
trial data (n = 97). Then, we validated the models using 
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additional external trial data (n = 34). In this study, 
we proposed two machine learning models: (1) clas-
sification of MCI and cognitively normal (CN) and (2) 
discrimination between MCI-AD dementia and CN. 
The results of our models were compared with those 
obtained using a previous statistical approach [21]. 
To ensure a fair comparison between statistical mod-
eling and machine learning, a calibration procedure 
for the fNIRS values used in the statistical model was 
also performed in machine learning. To match fNIRS 
values to the calibration procedure between the two 
approaches, we extended the following four feature 
values: fNIRS × years of education, fNIRS × household 
income, fNIRS × the Charlson comorbidity index, and 

fNIRS × age. Thus, a total of 11 features were used for 
the two aforementioned machine learning models.

Proposed machine learning models
Figure  1 illustrates the overall architecture of the two 
machine learning models for classifying MCI, CN, MCI-
AD dementia, and CN. For both models, we first com-
puted the values of the mean and standard deviation of 
each feature from the previous trial data and normalized 
all feature values from both datasets so that they had zero 
mean and unity standard deviation.

First, to classify MCI and CN, we used a light gradi-
ent boosting (LGB) model, which commonly trains data 
based on the gradient boosting principle. We applied 

Fig. 1  Our proposed overall architecture for the two models: the classification of MCI and CN uses an ensemble approach combining the three 
models of XGBoost, GB, and LGB, and the classification of MCI-AD and CN uses an ensemble approach combining the four models of XGBoost, 
GB, LGB, and AdaBoost. The balanced accuracy values from five models via fivefold cross-validation were used for cross-validation model weights 
to combine the five models. CN, cognitively normal; MCI, mild cognitive impairment; XGBoost, extreme gradient boosting; GB, gradient boosting; 
LBG, light gradient boosting; AdaBoost, adaptive boosting; AD, Alzheimer’s disease
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an exhaustive search (brute-force search) and sequen-
tial model-based optimization (SMBO) to determine 
the optimum hyperparameters of the model. For LGB, 
we found the following optimum parameters: boosting 
parameter of gradient-based one-side sampling (GOSS), 
maximum depth of 4; learning rate, 0.0001; number of 
tree estimators, 100; fraction of observation, 0.5; frac-
tion of columns, 0.1; and maximum number of leaves, 20. 
Based on the optimized models, we computed the prob-
abilities of MCI and CN by averaging the outputs from 
the XGBoost, GB, and LGB models. Subsequently, we 
computed balanced accuracy values from the five models 
via fivefold cross-validation and used the accuracy val-
ues as cross-validation model weights. By weighting the 
cross-validation model weights to the probability values 
derived from the five models via fivefold cross-validation, 
we obtained the final probabilities for MCI and CN.

Second, for the model to classify MCI-AD dementia 
and CN, we used an ensemble approach combining GB 
and LGB models. Here, one additional GB was combined 
with the model to classify MCI and CN. Similarly, we 
determined the optimal hyperparameters for each model. 
For GB, we found the following optimum parameters: 
maximum depth, 3; learning rate, 0.2; number of tree 
estimators, 100; and minimum number of observations, 
4. For LGB, we found the following optimum parameters: 
boosting parameter of gradient-boosted decision trees 
(GBDT) maximum depth, 6; learning rate, 0.25; number 
of tree estimators, 100; fraction of observation, 0.6; frac-
tion of columns, 0.6; and maximum number of leaves, 33. 
Based on the optimized models, we computed the prob-
abilities of MCI-AD dementia and CN by averaging the 
outputs from the GB, and LGB models. Next, we com-
puted balanced accuracy values from the five models 
via fivefold cross-validation and used the accuracy val-
ues as cross-validation model weights. By weighting the 
cross-validation model weights to the probability values 
derived from the five models via f-fold cross-validation, 
we obtained the final probabilities of MCI-AD dementia 
and CN.

All processing steps were performed on a personal 
computer equipped with an Intel Core i7-12700F 4.9-
GHz CPU, 512  GB of memory, and NVIDIA GEForce 
RTX 3080 Ti GPU. The models were implemented using 
Python (version 3.7.13) with TensorFlow-gpu (version 
2.6.0), Keras (version 2.9.0), NumPy (version 1.19.5), Pan-
das (version 1.3.5), Matplotlib (version 3.5.1), and Scikit-
learn (version 1.0.2).

Results
In total, 97 (original trial) and 36 (additional trial) 
elderly volunteers (aged > 60  years) with a suspected 
decline in cognitive function met the eligibility criteria. 

For the overall trial, 133 participants were recruited, 
of whom 71 (53.4%) were CN (median age 74.0  years; 
female sex 52.9%), 41 (30.8%) had MCI (median age 
74.0  years; female sex 53.7%), and 21 (15.8%) had AD 
dementia (median age 76.0  years; female sex 47.6%; 
Tables 1 and S1).

Table  2 summarizes the comparison of the classifica-
tion results of our ensemble machine learning models 
and the previous statistical approach using the accuracy 
metrics of the AUC, sensitivity, and specificity. Regarding 
the classification results of MCI-AD dementia and CN, 
our proposed machine learning model outperformed 
the statistical approach for both datasets. In the previous 
trial, the AUC value from our proposed machine learning 
model (0.925) was higher than that from the statistical 
approach (0.873). Similarly, from the additional external 
trial, the AUC value from our proposed machine learn-
ing model (0.825) was higher than that from a statistical 
approach (0.639). The results indicated that the statistical 
approach had a limitation of performance bias depending 
on the statistical value of the data being analyzed (pre-
vious trial data only). In contrast, our model minimized 
the overfitting issue and exhibited the performance of the 
generalized model. Regarding the classification results 
of MCI and CN, our proposed machine learning model 
also outperformed the statistical approach for both data-
sets. In the previous trial, the AUC value from our pro-
posed machine learning model (0.860) was slightly higher 
than that from the statistical approach (0.852). From the 
additional external trial, the AUC value from our pro-
posed machine learning model (0.854) was significantly 
higher than that from the statistical approach (0.688). 
The results also indicated that the statistical approach 
had a limitation of performance bias depending only on 
the statistical value from the previous trial. However, our 
model also minimized the overfitting issue by providing 
similar AUC values for both datasets.

Figure  2 shows the comparison of receiver operating 
characteristic curves from the additional external trial 
data when we considered the machine learning models: 
our ensemble model and each single machine learn-
ing model for the classification of MCI-AD dementia 
and CN in The results showed that the ensemble model 
provided higher AUC values in both the classification 
of MCI-AD dementia and CN and the classification of 
MCI and CN. We also compared hyper-parameter tun-
ing using grid search and optuna (Fig. S1). More detailed 
accuracy results for the comparison are shown in Tables 
S2 and 3 (classification of MCI-AD dementia and CN) 
and Tables S4 and 5 (classification of MCI and CN).

Figure  3a and b show the feature importance values 
calculated on 11 features for classification of MCI-AD 
dementia and CN and classification of MCI and CN 
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Table 1  Baseline characteristics of participants at enrollment (previous trial n = 97 and additional trial n = 36)

Abbreviations: AD Alzheimer’s disease, CN Cognitively normal, IQR Interquartile range, MCI Mild cognitive impairment, SD Standard deviation, SNSB Seoul 
Neuropsychological Screening Battery, APOE4 apolipoprotein E, PET Positron emission tomography
a The diagnostic criteria for MCI were based on the Jak/Bondi comprehensive criteria

Total CN MCIa AD dementia

Number (%) 133 (100.0) 71 (53.4) 41 (30.8) 21 (15.8)

Age, years, median (IQR) 74.0 (71.0 to 78.0) 74.0 (71.0 to 78.0) 74.0 (68.5 to 77.0) 76.0 (72.5 to 82.0)

Body mass index, kg/m2, n (%)

   < 25 (normal) 87 (65.4) 46 (64.8) 25 (61.0) 16 (76.2)

   ≥ 25 (overweight or obese) 46 (34.6) 25 (35.2) 16 (39.0) 5 (23.8)

Sex, female (%) 68 (51.1) 36 (52.9) 22 (53.7) 10 (47.6)

Education, years, median (IQR) 12.0 (6.0 to 14.0) 9.0 (6.0 to 12.5) 12.0 (6.0 to 13.0) 10.0 (6.0 to 16.0)

Household income, n (%)

  Low (1–29 percentile) 30 (22.6) 12 (16.9) 11 (26.8) 7 (33.3)

  Middle (30–69 percentile) 58 (43.6) 30 (42.3) 20 (48.8) 8 (38.1)

  High (70–100 percentile) 45 (33.8) 29 (40.8) 10 (24.4) 6 (28.6)

Smoking status, n (%)

  Never or ex-smoker 127 (95.5) 68 (95.8) 40 (97.6) 19 (90.5)

  Current smoker 6 (6.0) 3 (3.2) 1 (1.8) 2 (0.9)

Charlson comorbidity index, n (%)

  0 53 (39.8) 32 (45.1) 12 (29.3) 9 (42.9)

  1 50 (37.6) 26 (52.0) 18 (36.0) 6 (28.6)

   ≥ 2 30 (22.6) 13 (18.3) 11 (26.8) 6 (28.6)

APOE4 carrier, n (%) 59 (44.3) 17 (23.9) 29 (70.7) 13 (61.9)

Mini-Mental State Examination score, median (IQR) 27.0 (24.0 to 28.0) 28.0 (27.0 to 29.0) 26.0 (24.0 to 28.0) 21.0 (16.0 to 24.0)

Cognitive measure, composite z score, mean (SD)

  SNSB attention score  − 0.32 (0.96)  − 0.01 (0.90)  − 0.60 (0.85)  − 0.90 (0.95)

  SNSB language and related function score 0.07 (1.49) 0.55 (0.66)  − 0.01 (1.13)  − 1.96 (2.91)

  SNSB visuospatial function score 0.21 (2.34) 0.96 (0.72) 0.19 (1.58)  − 2.38 (4.62)

  SNSB memory score  − 0.36 (1.70) 0.65 (0.99)  − 0.97 (1.48)  − 2.70 (1.15)

  SNSB frontal/executive function score  − 0.26 (2.01) 0.56 (0.78)  − 0.66 (1.02)  − 2.33 (1.43)

Amyloid PET, standard uptake value ratio, mean (SD) 1.16 (0.29) 1.06 (0.30) 1.25 (0.25) 1.35 (0.23)

Hippocampal volume, cm3, mean (SD) 7.25 (1.28) 7.67 (0.95) 7.04 (1.43) 6.18 (1.26)

Table 2  C-statistic for the prediction model in the diagnosis of AD and MCI

Abbreviations: AD Alzheimer’s disease, AUC​ Area under the receiver operating characteristic curve, CI Confidence interval, CN Cognitively normal, MCI Mild cognitive 
impairment
a We excluded 16 patients with AD; therefore, the sample size for this analysis was 112

Olfactory-stimulated 
oxygenation difference in the 
orbitofrontal cortex

Previous trial (n = 97) Additional trial (n = 36)

AUC (95% CI) Sensitivity (%) Specificity (%) AUC (95% CI) Sensitivity (%) Specificity (%)

Classic prediction model for AD 
and MCI

0.873 (0.800 to 0.945) 88.1 81.8 0.639 (0.482 to 0.796) 60.0 68.8

Prediction model for AD and MCI 
using machine learning algorithm

0.925 88.1 80.0 0.825 65.0 81.3

Classic prediction model for MCI 
(excluded patients with AD)a

0.852 (0.764 to 0.939) 84.6 81.8 0.688 (0.527 to 0.848) 68.8 68.8

Prediction model for MCI using 
machine learning algorithm 
(excluded patients with AD)a

0.860 88.7 81.8 0.854 66.7 81.3



Page 7 of 11Kim et al. Alzheimer’s Research & Therapy          (2023) 15:127 	

respectively. For the classification of MCI-AD dementia 
and CN, fNIRS (1.000) had the highest importance value, 
followed by sex (0.734), age (0.686), and smoking sta-
tus (0.379). For the classification of MCI and CN, fNIRS 
(1.000) had also the highest importance value, followed 
by age (0.721), sex (0.710), and household income (0.444). 
The results indicated that fNIRS was the top contributor 
for both classification models. The feature importance 
values from the fNIRS were greater than those from age. 
In addition, we summarized the relationship between the 
number of features and the performance of the model in 
Fig. S2 and Table S6. However, the Charlson comorbidity 
index and fNIRS × age and years of education rarely con-
tributed to both classification models.

Discussion
Main findings
Through two independent trials, we found that machine 
learning models using olfactory-stimulated oxygena-
tion differences in the orbitofrontal cortex were superior 
in diagnosing MCI and AD dementia compared to the 
classic statistical model. In this study, we presented two 
machine learning models for the classification of MCI-
AD dementia and CN and for the classification of MCI 
and CN. Our models used an ensemble approach to com-
bine state-of-the-art models.

For the classification of MCI-AD dementia and CN, 
we combined four models, the GB and LGB, which pro-
vided AUC values of 0.925 and 0.825 for the original 

and additional trial datasets, respectively. For the classi-
fication of MCI and CN, we utilized single model LGB, 
which provided AUC values of 0.860 and 0.854 for the 
original and additional trial data, respectively. Compared 
to the classic statistical approach published in the previ-
ous study, our model provided consistent performance 
regardless of different datasets and higher AUC values. 
In particular, fNIRS, which is a useful diagnostic method, 
is the top contributor for both classification AI-driven 
models. Our results provide quantification of cognitive 
impairment (MCI and/or AD dementia) using olfactory-
stimulated fNIRS with machine learning to improve gen-
eralization and reproducibility.

Comparison with previous studies
Previous studies classifying AD stages using a novel 
diagnostic method and machine learning investigated 
wearable EEG (n = 26) [22], eye-tracking (n = 210) [23], 
and various genetic or serum biomarkers [24]. However, 
previous studies have provided little evidence due to the 
small sample size, lack of an extra-validation dataset, lack 
of reported feature importance, and use of an observa-
tion study dataset [22–24]. In contrast, our study used a 
novel diagnostic method to identify AD dementia and/or 
MCI using various AI-driven algorithms and compared 
them individually through two independent diagnostic 
trials. Additionally, in a previous study, some of the exist-
ing cognitive function tests were studied with the feature 
values of machine learning [25], which have the potential 

Fig. 2  Receiver operating characteristic curve of our models: the classification of MCI-AD and CN and the classification of MCI and CN. CN, 
cognitively normal; MCI, mild cognitive impairment; AD, Alzheimer’s disease
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to distort the results. In fact, a previous study reported 
that the cognitive function test result had the greatest 
influence on the model in feature importance [26]. To 
solve this problem, the model was trained using only 
fNIRS, sex, years of education, age, smoking status, and 
the Charlson comorbidity index. In addition, the covari-
ate problem was solved by adjusting each of the continu-
ous variables, such as age, years of education, household 
income, and Charlson comorbidity index, which could 
affect the fNIRS data. In terms of the feature importance 

of our model, the fNIRS value was found to be the most 
effective for identifying AD dementia and/or MCI.

Possible explanations for our results
This study was conducted in real-world practice using 
original and independent additional trials. Classic sta-
tistical methods cannot guarantee generalization and 
reproducibility in real-world practice. However, AI-
driven machine learning can solve these limitations by 
using variable pruning and group improvement.

Fig. 3  Ranked feature importance values from all 11 features: a the classification of MCI-AD and CN and b the classification of MCI and CN. 
Numbers in bold indicate statistically significant associations (P < 0.05). CN, cognitively normal; MCI, mild cognitive impairment; AD, Alzheimer’s 
disease; OD, olfactory-stimulated oxygenation difference in the orbitofrontal cortex; SS, smoking status; HI, household income; YE, years 
of education; CCI, Charlson comorbidity index
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The fNIRS system can continuously measure changes 
in the concentrations of oxidized hemoglobin and 
reduced hemoglobin in the cerebral cortex, making it a 
suitable system for tracking cerebral activity indicators 
[27, 28]. In this respect, it has several advantages over 
imaging equipment, such as functional MRI and amy-
loid PET. First, there is no problem of radiation exposure 
as with amyloid PET or brain CT, and there is no need 
to place the patient in a narrow place as with MRI. Sec-
ond, olfactory-stimulated fNIRS is faster (3 min) to per-
form than the SNSB (90 min or more), which is essential 
for the diagnosis of AD [29]. Our novel method is eas-
ily accessible to people who are illiterate or not coopera-
tive with AD-related examinations. Third, this method is 
much cheaper than brain MRI and amyloid PET, making 
it easily accessible, even in underdeveloped countries. 
Finally, this novel method enables the rapid diagnosis of 
MCI; thus, it is possible to provide more precise medical 
services to patients with MCI to prevent AD dementia.

Policy implication
Validation of our diagnostic method through machine 
learning can provide stable accuracy even when applied 
to new patient populations, especially illiterate patients 
who are difficult to diagnose using questionnaires, in 
addition to low cost, low patient risk (i.e., radiation 
risk), and short diagnostic time (3 min). We believe that 
these algorithms can also be installed on mobile devices, 
allowing them to perform cognitive function assess-
ments beyond the limitations of patients who cannot see 
experts in person [7]. This can help address the medi-
cal disparities between low-income and high-income 
patients, urban and rural areas, and developed and devel-
oping countries.

Strengths and limitations
This study has some limitations. First, although we 
recruited and included additional patients in an inde-
pendent trial, it was still a small Asian population. 
Therefore, it is necessary to verify the results through an 
international, large-scale trial. Comprehensive longitu-
dinal studies are required. Second, our study performed 
brain MRI, amyloid PET, and APOE4 genotyping in 
patients, but these data were not analyzed because they 
were not suitable for the purpose of our study. Further 
research is needed to determine the potential relationship 
between olfactory-stimulated fNIRS and the aforemen-
tioned data. Finally, there is a need for early intervention 
efforts in patients diagnosed with MCI using our novel 
methodology. Thus, policy and cost-effectiveness studies 
on the early prevention of AD among patients with MCI 
are warranted [30].

Despite these limitations, this study’s findings are 
meaningful. We found that the machine learning model 
achieved a high level of external validation accuracy in 
several algorithms. Moreover, our proposed machine 
learning method showed high accuracy and stabil-
ity compared with statistical linear models in external 
validation. Therefore, our results suggest that this novel 
method can be a potential indicator for identifying cogni-
tive impairments, such as AD dementia and/or MCI.

Conclusions
This is the first study to apply machine learning and sta-
tistical models to recruit patients for external validation 
of the olfactory-stimulated fNIRS diagnostic technique 
using a previous statistical model. Through two inde-
pendent trials, we found that machine learning models 
using olfactory-stimulated oxygenation differences in the 
orbitofrontal cortex were superior in diagnosing MCI 
and/or AD dementia compared to the classic statistical 
model. Our results suggest that the machine learning 
algorithm is stable across different patient groups and 
increases generalization and reproducibility. We sug-
gest that this machine learning model with a novel fNIRS 
approach can be used as a potential diagnostic tool for 
patients with MCI and/or AD dementia.
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