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Abstract 

Background  The development of drugs for Alzheimer’s disease (AD), which is related to the misfolding and aggrega-
tion of amyloid-β (Aβ), is high in demand due to the growing number of AD patients. In this study, we screened 22 
kinds of 5-mer synthetic peptides derived from the Box A region of Tob1 protein to find a peptide effective against Aβ 
aggregation.

Methods  A Thioflavin T (ThT) assay was performed to evaluate aggregation and screen aggregation inhibitors. Male 
ICR mice (6 weeks old) were administered saline, 9 nmol Aβ25-35, or a mixture of 9 nmol Aβ25-35 and 9 nmol GSGFK 
in the right lateral ventricle. Short-term spatial memory was assessed through Y-maze. Microglia cells (BV-)2 cells were 
plated on 24-well plates (4 × 104 cells/well) and incubated for 48 h, and then, the cells were treated with 0.01, 0.05, 
0.1, 0.2, or 0.5 mM GSGFK. After incubation for 24 h, bead uptake was evaluated using a laser confocal microscope and 
Cytation 5.

Results  We found two kinds of peptides, GSGNR and GSGFK, that were not only suppressed by aggregation of 
Aβ25-35 but also resolved the aggregated Aβ25-35. Results obtained from the Y-maze test on an Aβ25-35-induced 
AD model mouse indicated that GSGFK prevents the deficits in short-term memory induced by Aβ25-35. The effect of 
GSGFK on phagocytosis in BV-2 cells proved that GSGFK activates the phagocytic ability of microglia.

Conclusions  In conclusion, 5-mer peptides prevent short-term memory deficit in Aβ25-35 induced AD model 
mouse by reducing the aggregated Aβ25-35. They may also upregulate the phagocytic ability of microglia, which 
makes 5-mer peptides suitable candidates as therapeutic drugs against AD.
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Background
Alzheimer’s disease (AD) is the most common age-
related neurodegenerative disorder. Amyloid-β (Aβ) 42, 
one of the causes of AD, is produced by the cleavage of 
amyloid precursor protein (APP) by β- or γ-secretases 
[1, 2]. Since Aβ42 oligomers exhibit strong neurotoxicity, 
Aβ42 is a potential target for drug therapies [3–7]. Two 
strategies, involving inhibitors against β- or γ-secretases 
and against Aβ42 oligomerization, have been followed to 
develop drugs against AD; however, there are no reports 
of their effectiveness on established cases of AD.

Recent evidence suggests that in AD patients, Aβ25-
35 is produced via the enzymatic cleavage of Aβ42 and 
that Aβ25-35 can induce alterations in neuronal activity 
along with damage to long-term memory [8–10]. Fur-
thermore, administration of Aβ25-35 in the CA1 subfield 
of the rat hippocampus induces morphological changes 
in the granular cells of the dentate gyrus as well as 
impairment of memory retrieval [11]. Aβ25-35 intracer-
ebroventricular (i.c.v.) injected mice showed impairment 
in alternation behaviour in the Y-maze test. Histological 
examination indicated that i.c.v. injection of Aβ25-35 
induced cell loss, and we observed deposition of amy-
loid in the brain [12]. Therefore, Aβ25-35-induced AD 
model mouse are suitable for screening AD drugs [13–
15]. Several researchers have also carried out conforma-
tional studies of Aβ25-35 and toxicity in cells and showed 
that Aβ25-35 undergoes a conformational change from 
a soluble to an aggregated β-structure form [16, 17]. 
Aβ25-35 decreased cell viability by increasing apoptosis 
and abnormal nuclear morphology [18]. Some research-
ers revealed that the enhanced content of cholesterol in 
the cell membrane by Aβ25-35 led to neuronal apoptosis 
[19]. Thus, the use of Aβ25-35 peptide has contributed 
considerably toward understanding the effect of Aβ tox-
icity and aggregation mechanisms.

We recently reported synthetic peptides, JAL-TA9 
(YKGSGFRMI), which possess proteolytic activity and 
cleave Aβ fragment peptides [20, 21]. Our study was the 
first to report this peptide enzyme. Therefore, we used 
the term Catalytide (catalytic peptide) for the shorter 
proteolytic peptides [21]. JAL-TA9 is derived from the 
Box A region of Tob1, a member of the Tob/BTG family 
comprising BTG1, BTG2, BTG3/ANA, BTG4, and Tob2 
[22–25]. The catalytic centre of JAL-TA9 was identified 
as GSGFR. Furthermore, a structure–activity relation-
ship study showed that GSGYR, a point mutated peptide 
of GSGFR, also showed proteolytic activity and cleaved 
Aβ11-29 [26, 27].

In this study, we evaluated the effects of GSGFR and 
21 point-mutated GSGFR peptides against both Aβ25-
35 aggregation and its aggregated form. Two kinds of 
5-mer peptides, GSGNR and GSGFK, inhibited Aβ25-35 

aggregation but did not show proteolytic activity. In addi-
tion, to examine whether GSGFK prevents deficits in 
short-term spatial memory induced by Aβ25-35, we con-
ducted a Y-maze test [28]. As a result, two kinds of 5-mer 
peptides, GSGNR and GSGFK, were identified as effec-
tive candidates for a new AD treatment strategy.

Methods
Peptide preparation
The peptides were prepared as described previously [21]. 
Briefly, the peptides were synthesized using an auto-
mated peptide synthesizer (model 433A, Applied Biosys-
tems, CA, USA, 0.1 mmol scale with preloaded resin) and 
purified using reverse-phase high-performance liquid 
chromatography. The purified peptide was characterized 
by electrospray ionization-mass spectrometry using a 
Qstar Elite Hybrid LC–MS/MS system.

Thioflavin T‑assay
A Thioflavin T (ThT) assay was performed to evaluate 
aggregation [27]. The amyloid β-peptides (at a final con-
centration of 100 μM) were incubated with ThT solution 
(at a final concentration of 100 μM) in Tris–HCl buffer, 
pH 7.5 or PBS. The ThT signal was monitored by meas-
uring fluorescence emission at 480  nm for 10  s when 
excited at 444  nm using a Cytation 5 (BioTek). Aggre-
gated Aβ25-35 (100 μM) peptides were prepared through 
a 4-h incubation in PBS.

Animals
All procedures met the guidelines of the U.K. Animals 
for Scientific Procedures and Directive 2010/63/EU of 
the European Parliament and the National Institutes of 
Health guide for the care and use of laboratory animals 
and were approved by the committee for the Care and 
Use of Laboratory Animals at Kochi University (permis-
sion number: L-00048) and followed ARRIVE guide-
lines 2.0. Fifteen male ICR mice (4 weeks old; Japan SLC, 
Hamamatsu, Japan) were housed per cage and main-
tained at controlled temperature (23 ± 1℃) and humid-
ity (55 ± 2%) and a constant day-night rhythm (14/10-h 
light/dark cycle; lights on at 05:00) with free access to 
water and food. The experiment was conducted with a 
total of 15 mice.

Intraventricular injection of Aβ25‑35 and GSGFK
ICR mice were anesthetized with 1–3% isoflurane in a 
75:25 mixture of nitrous oxide and oxygen. Mice were 
administered a stereotaxic injection of saline, 9  nmol 
Aβ25-35, or a mixture of 9  nmol Aβ25-35 and 9  nmol 
GSGFK in the right lateral ventricle (anteroposterior, 0.2; 
mediolateral, 1.0; dorsoventral, 2.0 mm; from the bregma 
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and cortical surface) using a 10-μL Hamilton syringe 
(Fig. 1a; [29]).

Spontaneous alternation in Y‑maze test
The behaviour of mice in a spontaneous alternation 
Y-maze (40  cm long, three arms positioned at equal 
angles) was observed to measure short-term spatial 
memory deficits. Mice were placed at the end of one arm 
and allowed to explore freely during a 10-min session 
while the series of arm entries was recorded. Alterna-
tion was said to occur if a mouse entered an arm distinct 
from the two entered previously [28]. The percentage of 
relative alternation was calculated as [number of alterna-
tions  /  (number of total arm entries-2)] × 100. The time 
course of the Y-maze test is described in Fig. 1b.

Phagocytosis assay
Microglial cell line BV-2 was maintained in Dulbecco’s 
modified Eagle medium (DMEM), supplemented with 
5% foetal bovine serum in a CO2 incubator. The BV-2 
cells were plated on 24-well plates (4 × 104 cells/well) 
and incubated for 48 h. The medium was then replaced 
with serum-free DMEM, and the cells were treated with 
0.01, 0.05, 0.1, 0.2, or 0.5 mM of GSGFK. After incuba-
tion for 24 h, the cells were further incubated with 1 μm 
of yellow-green carboxylate latex beads (Polysciences, 
Warrington, PA, USA; 1:5000 dilution) for 30  min in 
a CO2 incubator. Next, the cells were fixed with 4% 

paraformaldehyde for 20 min. Bead uptake was evaluated 
in three randomly selected fields from four wells in each 
experiment [30] using a laser confocal microscope and 
Cytation 5.

Statistical analysis
All data are expressed as mean ± standard error of the 
mean. Statistical significance of the difference among 
experimental groups was measured using BellCurve for 
Excel (Social Survey Research Information Co., Ltd., 
Tokyo, Japan) followed by the Student’s t-test. The dif-
ference was considered significant at a p-value of 0.05. 
Graphs for the animal experiment were drawn in Graph 
Pad Prism [version 9.5.1 (528)] (Graph Pad Software, 
LLC).

Results
Screening of effective peptides
Aβ25-35 is an essential domain of Aβ42 aggrega-
tion [16, 17]. The ThT assay and electron micrographs 
showed that the ThT fluorescence intensity of Aβ25-
35 correlated with fibril formation [5]. We previously 
reported that Catalytides cleave Aβ1-18, Aβ1-20, 
Aβ11-29, and Aβ28-42 [20, 21, 26, 31]. However, there 
are no reports of the aggregation potency of these pep-
tides; thus, we compared the fluorescence intensity of 
six kinds of amyloid-β fragment peptides, including 
Aβ25-35, using ThT assay (Fig. 2).

Fig. 1  Methodology of animal experimentation. a Intraventricular injection of ICR mouse. b Experimental scheme

Fig. 2  Amino acid sequences of Aβ42 and six kinds of amyloid-β fragment peptides
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When observed at 4  h, the fluorescence intensity of 
Aβ11-29 and Aβ25-35 solutions was increased. Among 
these two peptides, Aβ25-35 showed a higher aggrega-
tion potency (Fig. 3a), while the other peptides, Aβ1-20, 
Aβ1-18, Aβ28-42, and Aβ36-42, did not show any change. 
Next, we analysed Aβ25-35 aggregate formation for up to 
8 h using the ThT assay in order to confirm the aggrega-
tion potency. The fluorescence intensity increased for up 
to 4 h and then decreased in a time-dependent manner, 
indicating that a 4-h incubation time was sufficient to 
monitor Aβ25-35 aggregate formation (Fig.  3b). Subse-
quently, we decided to use Aβ25-35 as a target peptide 
for the following experiments.

We next screened the effect of 22 kinds of 5-mer pep-
tide derivatives corresponding to GSGFR in the Box A 
region of Tob1 proteins against Aβ25-35 aggregation 
using the ThT assay. The fluorescence intensity of Aβ25-
35 was calculated after a 4-h incubation. Among the 22 
kinds of peptides, GSGFK and GSGNR notably reduced 
the fluorescence intensity (Fig. 4). These results suggested 
that both GSGFK and GSGNR may have an inhibitory 
effect on Aβ25-35 aggregation.

Inhibitory effects on Aβ25‑35 aggregate formation
To confirm the suppression of aggregation, we analysed 
the effects of GSGFK and GSGNR against Aβ25-35 using 
a triplicate assay for up to 24  h (Fig.  5a). GSGFK sup-
pressed the aggregation of Aβ25-35 at 4  h. The fluores-
cence intensity plateaued after the 4-h incubation, and 
the pattern was similar to that of Aβ25-35 alone. On the 
other hand, GSGNR did not suppress the aggregation of 
Aβ25-35 at 4 h, but the fluorescence intensity was rapidly 

reduced between 4 and 8 h post-incubation. After 24 h, 
both peptides suppressed the fluorescence intensity at the 
same level and showed a significant difference as per the 
Student’s t-test (GSGNR: p = 0.011, GSGFK: p = 0.007). 
These data indicated that both GSGFK and GSGNR can 
suppress the aggregation of Aβ25-35 (Fig. 5b).

Resolving effects on aggregated Aβ 25–35
We analysed whether GSGFK and GSGNR, which sup-
pressed the aggregation of Aβ25-35, can also resolve 
the Aβ25-35 that has already aggregated. First, Aβ25-
35 was incubated at 37  °C for 4 h to allow the forma-
tion of Aβ25-35 aggregates (AgAβ25-35). AgAβ25-35 
was co-incubated with GSGFK, GSGNR, or GTGFR. 
GTGFR which did not show inhibitory activity against 

Fig. 3  Thioflavin T-fluorescence profile of amyloid-β fragment peptides (Aβ-FPs). a Six kinds of 100 μM Aβ-FPs (Aβ1-18, Aβ1-18, Aβ11-29, Aβ25-35, 
Aβ28-42, and Aβ36-42) were incubated in Tris–HCl buffer (pH 7.5). The fluorescence intensity was measured at 0, 2, and 4 h. b Time course 
aggregation of Aβ25-35; 100 μM Aβ25-35 was incubated in Tris–HCl buffer (pH 7.5) and the fluorescence intensity was measured up to 8 h

Fig. 4  Screening for peptide that suppresses the aggregation of 
Aβ25-35 using Thioflavin T assay. The fluorescence intensity was 
measured after reaction with a mixture of each peptide (100 μM) at 
37℃
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the aggregation of Aβ25-35 was selected as a negative 
control  (Fig.  4). The initial fluorescence intensity was 
higher due to the pre-incubation of Aβ25-35 (Fig. 6a). 
The intensities of AgAβ25-35 alone and AgAβ25-
35 co-incubated with GTGFR decreased for 24  h in 
a time-dependent manner (Fig.  6a). The decrease in 
the fluorescence intensity of Aβ25-35 after reaching 
the maximum intensity value has also been reported 
and may be caused by the greater aggregative ability 
of β25-35 [16]. There was a reduction in AgAβ25-35 

co-incubation with GSGFK or GSGNR. The level of 
the fluorescence intensity was significantly decreased 
(GSGFK: p = 0.002, GSGNR: p = 0.008) at 4 h and pla-
teaued thereafter (Fig. 6a).

Since the initial fluorescence intensity was different 
for each reaction solution, we calculated the decreasing 
ratio based on the fluorescence intensity immediately 
after the start of the reaction and after 4 h. On compari-
son, both peptides showed significantly high decreasing 
ratios (GSGFK: p = 0.018, GSGNR: p = 0.014) (Fig. 6b). 

Fig. 5  Thioflavin T-based evaluation of the inhibitory effect of GSGFK and GSGNR on Aβ25-35 aggregation. a Time course of the fluorescence 
intensity of each reaction mixture. Aβ25-35 (100 μM) was incubated with GSGNR (100 μM) or GSGFK (100 μM) at 37℃ for up to 24 h. b The 
fluorescence intensity after incubation of 24 h. Data shown are mean ± standard error of the mean (n = 3), versus Aβ25-35 group. *p < 0.05. GSGNR, 
p = 0.011; GSGFK, p = 0.007

Fig. 6  Resolving effects of GSGFK and GSGNR on aggregated Aβ25-35. Aβ25-35 (100 μM) was pre-incubated for 4 h to make its aggregated form, 
AgAβ25-35. a Time course of ThT-fluorescence intensity. b The decreasing ratio of the fluorescence intensity at 4 h. Decreasing ratio was calculated 
by measuring the fluorescence intensity at 0 and 4 h using the following formula: Decreasing ratio = fluorescence intensity at 0 h − fluorescence 
intensity at 4 h / fluorescence intensity at 0 h × 100. Data shown are mean ± standard error of the mean (n = 3), versus Aβ25-35 group. *p < 0.05. a 
GSGNR, p = 0.008; GSGFK, p = 0.002; b GSGNR, p = 0.014; GSGFK, p = 0.018
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These results indicate that both GSGFK and GSGNR 
can resolve the aggregated Aβ 25–35.

Animal experiments
We investigated whether 5-mer peptides prevented the 
short-term spatial memory deficits induced by Aβ25-35 
i.c.v. injection. Among the two types of 5-mer peptides, 
GSGFK, which showed an aggregation inhibitory effect, 
was selected. The Y-maze test was performed at 11, 27, 
and 39 days after injection to evaluate the inhibitory effects 
of GSGFK on aggregates by measuring the spontaneous 
alternation rate [28]. The alternation rate of the Aβ25-35-
injected group induced significant short-term memory 
deficits as compared with that of the saline-injected group 
on all days (Day 11: p = 0.021, Day 27: p =  < 0.001, Day 39: 
p = 0.001). On the other hand, the Aβ25-35-co-injected 
GSGFK group showed a significantly heightened alterna-
tion rate compared with that of the Aβ25-35 group at 27 
(p =  < 0.001) and 39  days (p = 0.001) (Fig.  7 and Table  1). 
These results indicated that GSGFK prevents the deficits in 
short-term memory induced by Aβ25-35.

Cell experiments
We analysed the effect of GSGFK on the phagocytic activ-
ity of BV-2 cells. BV-2 cells were treated with GSGFK prior 
to the administration of yellow-green carboxylate beads. 
As shown in Fig. 8a and b, the bead uptake in BV-2 cells 
treated with 200  µM GSGFK was significantly higher 
(p = 0.028) than that of the non-treated (control) and 5-mer 
peptide cells, which did not show any inhibitory activity 
against Aβ25-35 aggregation (negative control). In addi-
tion, BV-2 cells were treated with 10–500 μM GSGFK prior 
to the administration of yellow-green carboxylate beads. 
As a result, the bead uptake was increased when treated 
with GSGFK in a dose-dependent manner (Fig. 8c). These 
results revealed that GSGFK activates the phagocytic abil-
ity of microglia to remove waste products in the brain.

Discussion
Many trials for the development of AD treatment drugs 
have been conducted for a long period; however, the results 
have not been encouraging [7, 11, 32–36]. A few Aβ anti-
bodies and vaccines aimed at inhibiting Aβ aggregation 
are still under development [4, 35, 36]. Recently, aduca-
numab, an antibody drug that inhibits Aβ aggregation, 
was approved by the U.S. Food and Drug Administration 
[7]. Aducanumab has been shown to inhibit the clini-
cal manifestation of mild AD, but no drugs have yet been 
developed to radically eliminate Aβ and improve symp-
toms. Lecanemab is the latest Aβ antibody expected to be 
a more effective treatment for AD than aducanumab with a 
similar mechanism. These drugs are potentially effective in 
the early stages of AD. In the present study, we found that 
GSGFK and GSGNR are not only effective against aggre-
gate formation of Aβ25-35 but also the aggregated Aβ25-35 
already formed. In addition, GSGFK suppressed the cogni-
tive deficits of the AD model mouse  induced by Aβ25-35 
injection.

Microglia are glia cells in the brain and spinal cord that 
maintain homeostasis by scanning the central nervous sys-
tem. Microglia mediate inflammation and phagocytosis. 
Phagocytosis by microglia regulates brain development by 
controlling the neuronal population. In AD, phagocytosis 
is important for eliminating aggregated proteins such as 
Aβ [37, 38]. Recently, the relationship between microglia 
phagocytosis and age-related neurodegenerative disorders 
was studied [39, 40]. However, the role of microglia in AD 
remains controversial. Activated microglia release cyto-
toxic cytokines, which are considered to progress AD. In 

Fig. 7  Prevention of short-term spatial-memory impairment by 
GSGFK. Y-maze test was performed at 11, 27, and 39 days after 
intracerebroventricular injection of saline, 9 nmol Aβ25-35, or a 
reaction mixture of 9 nmol Aβ25-35 and 9 nmol GSGFK. Data shown 
are mean ± standard error of the mean (n = 5). *p < 0.05. Saline: 
p = 0.021 (Day 11), p =  < 0.001 (Day 27), p = 0.001 (Day 39); GSGFK: 
p =  < 0.001 (Day 27), p = 0.001 (Day 39)

Table 1  Standard error of the mean (SEM), median and 25th and 75th percentile alternation ratio
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Fig. 8  Effect of GSGFK on the phagocytic activity of BV-2 cells (BV-2 cells). a Representative image of fluorescent latex beads (green). b The amount 
of bead uptake in BV-2 cells. c BV-2 cells treated with PBS or GSGFK (500, 100, 50, and 10 μM). Excitation: 445 nm, emission: 500 nm. Data shown are 
mean ± standard error of the mean (n = 4). *p < 0.05. GSGFK, p = 0.028

Fig. 9  Effect of 5-mer peptides on protofibril and fibril in Aβ25-35
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contrast, phagocytosis has been shown to decrease the pro-
gression of AD [41–43]. The timing of this shift in micro-
glia from being protective to pathogenic remains unclear, 
but microglia have been shown to play neuroprotective 
roles during the early stage of AD through the promotion 
of Aβ clearance [44]. Thus, microglia are expected to be 
important for developing new therapeutic approaches for 
AD treatment. The current study revealed that GSGFK 
could play a neuroprotective role in the early stage of AD 
by inhibiting Aβ aggregation and promoting phagocytosis.

The development cost and side effects of antibody 
drugs, such as aducanumab and lecanemab, are consid-
ered problems; however, 5-mer peptides have no such 
limitations due to their weak side effects and lower man-
ufacturing cost.

Limitations
This study has some limitations. First, we investigated the 
effects of 5-mer peptides on Aβ25-35—an essential Aβ42 
aggregation domain; however, the effects against Aβ42 
aggregation were not studied. Next, we conducted only 
the Y-maze test to determine the effect of GSGFK on the 
AD model  mouse. Other tests evaluating the cognitive 
state are required to validate the effects of 5-mer peptides 
observed in our study.

Conclusion
It is necessary to confirm the inhibitory effects of 5-mer 
peptides on Aβ42 or Aβ40 through animal experimenta-
tion using APP-knock-in and/or Aβ25-35-induced AD 
model  mouse. Nevertheless, we believe that the 5-mer 
peptides GSGFK and GSGNR can resolve fibrils in addi-
tion to the inhibition of further fibril formation from 
protofibrils. In conclusion, 5-mer peptides are poten-
tial candidates for the prevention and treatment of AD 
(Fig. 9).
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